Научная статья

УДК 636.5.087

Использование хитозанового комплекса в комбикормах для цыплят-бройлеров, содержащих пораженную микотоксинами кукурузу

Иван Афанасьевич Егоров¹, Татьяна Владимировна Егорова¹, Вадим Геннадьевич Фролов²

¹ФГБНУ Федеральный научный центр «Всероссийский научно-исследовательский и технологический институт птицеводства» Российской академии наук (ФНЦ «ВНИТИП» РАН); ²ООО «Агрохитин»

Аннотация: Возможность снижения токсичного действия пораженной микотоксинами кукурузы в составе комбикормов для цыплят-бройлеров с помощью включения в их состав хитозанового комплекса (КХ-1) была изучена на 6 группах бройлеров кросса «Смена-9» (35 голов в группе), выращивавшихся до 35 дней жизни. Контрольная группа 1 и опытная группа 2 получали в рационе 30% доброкачественной кукурузы; в рационах опытных групп 3-6 доброкачественную кукурузу наполовину (группы 3 и 4) или полностью (группы 5 и 6) заменяли на пораженную микотоксинами (охратоксин А, афлотоксин В1, Т2 токсин). Группы 2, 4 и 6 дополнительно получали КХ-1 (100 г/т). Установлено, что препарат обладает выраженным ростостимулирующим действием: показатели эффективности роста и использования кормов в группе 2 были выше, чем в контроле. В группах 3 и 5 живая масса бройлеров снижалась по сравнению с контролем во все возрастные периоды: в 14 суток на 8,78 и 14,04%; в 21 сутки – на 8,66 и 13,24%, в 35 суток – на 8,67 и 13,87%; однако в группах 4 и 6 она была выше, чем в группах 3 и 5, на 3,61 и 2,04%; 5,67 и 5,96%; 5,42 и 5,81% соответственно этим же возрастам. Бройлеры всех групп потребляли за период опыта практически одинаковое количество кормов, однако их конверсия в группах 3 и 5 была выше контроля на 12,43 и 17,62%; в группах 4 и 6 этот показатель улучшился, но все равно был выше контроля (на 7,05 и 11,72%). КХ-1 также улучшал переваримость и использование питательных веществ, как из кормов с нетоксичной кукурузой (в группе 2 по сравнению с контролем), так и с токсичной (в группах 4 и 6 по сравнению с группами 3 и 5), в результате чего оказал положительное влияние на показатели минерализации костяка бройлеров. Сделан вывод, что данный препарат в кормовой дозе 100 г/т можно использовать для смягчения негативных последствий использования в комбикормах для бройлеров контаминированной микотоксинами кукурузы.

Ключевые слова: микотоксины, хитозановые комплексы, бройлеры, среднесуточный прирост живой массы, переваримость и использование питательных веществ, минерализация костяка.

Для цитирования: Егоров, И.А. Использование хитозанового комплекса в комбикормах для цыплятбройлеров, содержащих пораженную микотоксинами кукурузу / И.А. Егоров, Т.В. Егорова, В.Г. Фролов // Птицеводство. – 2022. – № 10. – С. 34-38.

doi: 10.33845/0033-3239-2022-71-10-34-38

Введение. Достижения в области генетики и селекции позволили существенно увеличить скорость роста сельскохозяйственной птицы и улучшить конверсию корма. В то же время, у высокопродуктивной птицы снижается стрессоустойчивость и появляются новые проблемы, которые ставят множество вопросов перед специалистами в области ветеринарии и зоотехнии. Высокопродуктивная птица более чувствительна к стрессам, а низкая

иммунокомпетентность часто приводит к вспышкам заболеваний, в том числе и вирусного характера. При этом питание птицы, как фактор внешней среды, играет решающую роль, оказывая влияние на иммунную систему; при нарушении сбалансированности комбикормов по питательности и биологически активным веществам осложняется проведение специфической профилактики болезней, и ее результативность резко снижается.

Комбикорма, представляя собой многокомпонентную смесь продуктов растительного, животного и минерального происхождения, являются высокопитательным субстратом для развития различных микробов и бактерий. Комбикорм одновременно может содержать микотоксины, бактериальные токсины, токсины амбарных вредителей, продукты окисления жиров, тяжелые металлы, ксенобиотики техногенного происхождения и др.

Контаминация кормов микотоксинами и острота проявлений микотоксикозов птицы возрастает с каждым годом. Это, возможно, связано, прежде всего, с усилением мониторинга подозрительных материалов и ростом осведомленности специалистов в отношении симптомов микотоксикозов. Глобальное изменение климата на Земле также способствует усилению контаминации зерна микотоксинами. Как засуха, так и продолжительные дожди и наводнения стимулируют рост микроскопических грибов.

Для промышленного птицеводства значительную угрозу представляет контаминация кормов Т-2 токсином, который оказывает целый ряд негативных воздействий на организм животных, обусловленных, главным образом, его способностью ингибировать биосинтез белка. Типичными симптомами хронического Т-2-токсикоза являются отказ от корма, некротические поражения слизистой оболочки пищеварительного тракта, и, как следствие, снижение прироста живой массы, ухудшение мясной и яичной продуктивности, изменения биохимического состава яиц, иммуносупрессия. НТ-2 токсин является производным Т-2 токсина, продуктом его щелочного гидролиза. Действие НТ-2 токсина на животный организм во многом сходно с действием Т-2 токсина.

Лидером по содержанию Т-2 и HT-2 токсинов являются образцы кукурузы. Соответственно комбикорма, содержащие в своем составе кукурузу, в той или иной степени насыщены этими микотоксинами.

В настоящее время на рынке представлено большое количество отечественных и зарубежных кормовых добавок для снижения

Таблица 1. Схема опыта на цыплятах-бройлерах, получавших с комбикормом хитозановый комплекс KX-1 (n=35)

Группа	Особенности кормления
1κ	Основной рацион, сбалансированный по всем питательным веществам в соответствии с нормами ВНИТИП [1], содержащий 30% доброкачественной кукурузы (OP-1)
2	OP-1 + хитозановый комплекс «КХ-1» из расчета 100 г/т*
3	OP-1 с включением 15% пораженной микотоксинами кукурузы взамен аналогичного количества доброкачественной (OP-2)
4	OP-2 + хитозановый комплекс «КХ-1» из расчета 100 г/т
5	OP-1 с полной заменой доброкачественной кукурузы на пораженную микотоксинами (OP-3)
6	OP-3 + хитозановый комплекс «КХ-1» из расчета 100 г/т

^{*} Рациональный уровень ввода хитозанового комплекса был установлен в предыдущем опыте.

отрицательного влияния микотоксинов на организм птицы.

Хитозан является производным полисахарида хитина. Образуется он из N-ацетил—D-глюкозаминовых звеньев, которые обнаруживаются у насекомых, морских диатомовых водорослей, грибов и ракообразных, путем деацетилирования, деминерализации, депротеинизации и обесцвечивания.

Несколько исследований по применению хитозана в качестве кормовой добавки в рационах животных показали различные результаты [1-3]. Вместе с тем, в других исследованиях хитозан рассматривается как перспективная добавка с многофункциональной активностью, например, как антимикробное средство против пищевых патогенов [4].

Наиболее эффективным методом нейтрализации микотоксинов, уже присутствующих в корме, является их связывание до инертных соединений до того, как они смогут всосаться в кишечнике. Вопрос, который часто задают производители комбикормов, животноводы и птицеводы, звучит так: «Какой адсорбент микотоксинов наиболее эффективен?» Ответ: главное свойство, которым должен обладать «идеальный» адсорбент — способность связывать широкий спектр микотоксинов.

В наших опытах применялся хитозановый комплекс со степенью деацетилирования 90%, произведенный компанией ООО «Агрохитин», который был предварительно испытан в условиях СГЦ «Загорское ЭПХ» в 2021 г. при использовании доброкачественных кормов.

Целью наших исследований являлось изучение зоотехнических и физиолого-биохимических показателей цыплят-бройлеров при включении хитозанового комплекса в комбикорма, произведенные с использованием доброкачественной или пораженной микотоксинами кукурузы.

Материал и методика исследований. Исследования проведены в условиях СГЦ «Загорское ЭПХ» в 2022 г. на бройлерах кросса «Смена 9», содержавшихся в клеточных батареях типа Р-15 с 1- до 35-суточного возраста. Из суточных кондиционных цыплят методом случайной выборки было сформировано 6 групп по 35 голов в каждой. Схема опыта приведена в табл. 1.

Нормы посадки, световой, температурный, влажностный режимы, фронт кормления и поения во все возрастные периоды соответствовали рекомендациям ВНИТИП и для всех групп были одинаковыми.

Таблица 2. Зоотехнические показатели выращивания бройлеров, получавших качественную или контаминированную микотоксинами кукурузу и хитозановый комплекс КХ-1

Показатель	Группа						
показатель	1к	2	3	4	5	6	
Сохранность, %	100,0	100,0	97,1	100,0	91,4	97,1	
Живая масса, г: в 1 сутки	43,85 ±0.18	43,71 ±0.15	43,77 ±0.14	43,75 ±0.14	43,76 ±0.14	43,75 ±0.16	
в 14 суток	456 ±4,69	478 ±5,32	416 ±4,23	431 ±4,43	392 ±3,55	400 ±5,67	
% к контролю		104,8	91,2	94,5	86,0	87,7	
в 21 сутки	831 ±9,60	885 ±9,66	759 ±9,64	802 ±9,79	721 ±10,05	764 ±8,66	
% к контролю		106,5	91,3	96,5	86,8	91,9	
в 35 суток, в среднем	2019	2125	1844	1944	1739	1840	
% к контролю		105,3	91,3	96,3	86,1	91,3	
в т.ч.курочки	1814 ±13,49	1885 ±13,95	1650 ±15,28	1737 ±15,65	1570 ±13,86	1662 ±13,77	
% к контролю		103,9	91,0	95,8	86,6	91,6	
в т.ч.петушки	2223 ±17,57	2325 ±17,65	2038 ±16,45	2151 ±15,14	1908 ±18,53	2018 ±17,48	
% к контролю		104,6	91,7	96,8	85,8	90,8	
Расход корма за весь период, кг/гол.	3,083	3,126	3,008	3,175	3,112	3,133	
% к контролю		101,4	97,6	103,0	101,0	101,6	
Расход корма на 1 кг прироста живой массы, кг	1,561	1,502	1,755	1,671	1,836	1,744	
% к контролю		96,2	112,4	107,1	117,6	111,7	
Среднесуточный прирост живой массы, г	56,43	59,47	51,44	54,29	48,44	51,32	
% к контролю		105,4	91,2	96,2	85,8	91,0	
Выход грудных мышц, %	29,0	29,7	28,0	28,6	27,2	27,9	
Убойный выход, %	72,0	72,5	71,4	72,0	70,3	70,7	

Птица кормилась россыпными комбикормами с питательностью согласно нормам [1]. В период 1-14 дней скармливали комбикорма под маркой Стартер; 15-21 день – комбикорм Гроуер; 22-35 день – комбикорм Финишер. Комбикорма обогащали витаминами и микроэлементами в соответствии с нормами [1]. В качестве испытуемой добавки бройлерам опытных групп 2, 4 и 6 скармливали хитозановый комплекс производства российской компании ООО «Агрохитин».

Учитываемые показатели: сохранность поголовья (%) – путем учета отхода и установление его причин; живая масса бройлеров в возрасте 1, 14, 21 и 35 суток, путем индивидуального взвешивания всего поголовья по группам; среднесуточный прирост живой массы (г); потребление кормов за весь период выращивания (кг/гол.); затраты корма на 1 кг прироста живой массы в конце опыта (кг); переваримость и использование птицей основных питательных веществ корма (%) — по результатам физиологического опыта в возрасте 30-35 суток; химический состав мяса бройлеров (%); выход грудных мышц (%); убойный выход (%); содержание золы, кальция и фосфора (%), меди, марганца и цинка (мг%) в большеберцовой кости; содержание микотоксинов в кукурузе (мкг/кг).

Результаты исследований и их обсуждение. Химический анализ показал, что в пораженной кукурузе содержались: охратоксин A - 0.012 - 0.017 мг/кг, афлатоксин $B_1 - 0.028 - 0.034$ мг/кг и T-2 токсин - 0.13 - 0.18 мг/кг. Уровни дезоксинивалинола (ДОН) и фу-

монизина не превышали ПДК и составляли 0,4-0,5 и 1,4-2,2 мг/кг соответственно.

Кислотное число липидов пораженной кукурузы было на уровне 32 мгКОН/г, а перекисное число – 0,8% йода. В доброкачественной кукурузе уровень перечисленных микотоксинов не превышал установленных ПДК, при этом кислотное число находилось на уровне 6 мгКОН/г, а перекисное – 0,1% йода.

Основные зоотехнические показатели бройлеров приведены в табл. 2. Сохранность цыплят при включении в комбикорма 15 и 30% токсичной кукурузы (группы 3 и 5) понижалась на 2,9 и 8,6%, а при параллельном использовании хитозанового комплекса этот показатель увеличивался на 2,9 и 5,7% соответственно. Бройлеры, получавшие «чистую» кукурузу (группы 1 и 2) имели 100%-ную сохранность.

Включение в комбикорма пораженной микотоксинами кукурузы в количестве 15 и 30% (группы 3 и 5) привело к снижению живой массы бройлеров по сравнению с контролем во все возрастные периоды: в 14 суток на 8,78 и 14,04%; в 21 сутки – на 8,66 и 13,24%, а в 35 суток - на 8,67 и 13,87%. При этом живая масса бройлеров в 14-, 21- и 35-суточном возрастах в группах 4 и 6 (15 и 30% токсичной кукурузы + КХ-1) была выше, чем в группах 3 и 5, на 3,61 и 2,04%; 5,67 и 5,96%; 5,42 и 5,81% соответственно возрастам. Показатели среднесуточного прироста живой массы за 35 дней также были самыми низкими в группах 3 и 5.

Бройлеры всех групп потребляли за период опыта практически одинаковое количество кормов, однако их конверсия в группах 3 и 5 была хуже контроля на 12,43

и 17,62%. При добавке в комбикорма этих групп хитозанового комплекса (группы 4 и 6) затраты кормов на 1 кг прироста живой массы снизились, но по сравнению с контролем все равно были выше (на 7,05 и 11,72%).

Следует отметить, что живая масса и скорость ее прироста, а также затраты кормов на прирост в группе 2 были выше, чем в контроле, что свидетельствует о том, что хитозановый комплекс обладает выраженным ростостимулирующим действием даже на фоне нетоксичного рациона.

Основные показатели переваримости и использования питательных веществ кормов представлены в табл. 3. Переваримость протеина в группах 3 и 5 была ниже, чем в контроле, на 3,24 и 7,80%; в группах 4 и 6 это снижение уменьшалось на 1,4 и 5,1%.

Использование азота корма в опытных группах находилось в аналогичной зависимости: в группах 3 и 5 оно было ниже контроля на 3,80 и 8,30%, а в группах 4 и 6 улучшалось на 2,6 и 2,7% по сравнению с группами 3 и 5. Доступность лизина и метионина в группах 3 и 5 была ниже, чем в контроле (по лизину на 4,0 и 7,6% по метионину – на 5,8 и 8,8%), и улучшалась в группах 4 и 6. Аналогичные тенденции отмечены по переваримости жира и по ис-

Таблица 3. Основные показатели переваримости и использования питательных веществ корма у цыплят-бройлеров в возрасте 30-35 суток, % (n=6)

Померен 9/	Группа						
Показатель, %	1к	2	3	4	5	6	
Переваримость:							
протеина	89,4	90,4	86,2	88,0	81,6	84,3	
жира	75,2	75,9	73,0	74,4	70,5	72,9	
Использование азота	49,5	52,7	45,7	48,3	41,2	43,9	
Доступность:							
лизина	81,9	82,3	77,9	80,4	74,3	76,2	
метионина	80,8	81,9	75,0	80,2	72,0	74,8	
Использование:							
кальция	45,2	47,4	42,0	44,7	39,5	42,0	
фосфора	36,1	38,0	34,0	37,6	30,0	34,8	

Таблица 4. Содержание золы, кальция, фосфора и микроэлементов в большеберцовой кости 35- суточных бройлеров

	Содержание в 100 г сухого вещества							
Группа	3ола, %	Кальций, %	Фосфор, %	Марганец, мг%	Цинк, мг%	Медь, мг%		
1κ	46,11	17,29	8,99	0,32	13,09	0,309		
2	46,88	18,27	9,11	0,33	12,83	0,311		
3	43,77	16,02	8,04	0,30	12,10	0,266		
4	44,78	16,94	8,19	0,31	12,22	0,290		
5	40,00	15,71	7,56	0,28	11,09	0,210		
6	46,88	16,05	8,00	0,29	11,44	0,250		

пользованию кальция и фосфора.

Наиболее высокими показатели переваримости и использования всех изученных питательных веществ были в группе 2.

Негативное влияние контаминированной микотоксинами кукурузы и позитивное влияние хитозанового комплекса на использование кальция и фосфора отразилось на минерализации большеберцовой кости 5-недельных бройлеров (табл. 4). Содержание золы, кальция, фосфора и микроэлементов (кроме цинка) в группе 2 было несколько выше, чем в группе 1,

существенно снижалось по сравнению с этой группой в группах 3 и 5, и повышалось (хотя и не до уровня контроля) в группах 4 и 6.

Заключение. Таким образом, включение хитозанового комплекса «КХ-1» в комбикорма в количестве 100 г/т на протяжении всего периода выращивания бройлеров позволяет снизить токсичное действие пораженной микотоксинами кукурузы, содержащейся в комбикормах.

Исследование выполнено в рамках работ по госзаданию №121031300018-6.

Литература

- 1. Методическое пособие по кормлению сельскохозяйственной птицы / И.А. Егоров, Т.Н. Ленкова, В.А. Манукян [и др.]. Под общ. ред. Фисинина В.И. и Егорова И.А. Сергиев Посад: ВНИТИП, 2021. 359 с.
- 2. Егоров, И.А. Хитозановые комплексы в комбикормах и питьевой воде для цыплят-бройлеров / И.А. Егоров, Т.В. Егорова, В.Г. Фролов, И.И. Ивашин // Птицеводство. 2021. №10. С. 4-8.
- 3. Егоров, И.А. Хитозановые комплексы как альтернатива кормовым антибиотикам для бройлеров / И.А. Егоров, Т.В. Егорова, В.Г. Фролов, И.И. Ивашин // Комбикорма. 2021. №10. С. 61-63.
- 4. Kalińska, A. Silver and copper nanoparticles an alternative in future mastitis treatment and prevention? / A. Kalińska, S. Jaworski, M. Wierzbicki, M. Gołębiewski // Intl. J. Mol. Sci. 2019. V. 20. No 7. P. 1672.

Сведения об авторах:

Егоров И.А.: доктор биологических наук, профессор, академик PAH; olga@vnitip.ru. **Егорова Т.В.:** кандидат сельскохозяйственных наук; egorova_t@vnitip.ru. **Фролов В.Г.:** генеральный директор; sonat.nn@mail.ru. Статья поступила в редакцию 10.08.2022; одобрена после рецензирования 08.09.2022; принята к публикации 21.09.2022.

Research article

Chitosan-Based Complex in Diets for Broilers Containing Corn Contaminated with Mycotoxins

Ivan A. Egorov¹, Tatiana V. Egorova¹, Vadim G. Frolov²

¹Federal Scientific Center "All-Russian Research and Technological Institute of Poultry" of Russian Academy of Sciences; ²Agrochitin Co., Ltd (Russia)

Abstract. The possibility of alleviation of toxic effects of mycotoxin-contaminated corn in compound feeds for broilers by additional supplementation of the latter with a chitosan-based additive was studied on 6 treatments of cage-housed Smena-9 broilers (35 birds per treatment, 1-35 days of age). Control treatment 1 and treatment 2 were fed diets with 30% of mycotoxin-free corn; in diets for treatments 3-6 this corn was halfway (treatments 3 and 4) or fully (treatments 5 and 6) substituted with contaminated corn containing ochratoxin A, aflatoxin B1, T2 toxin. Diets for treatments 2, 4 and 6 were additionally supplemented with 100 ppm of the chitosan additive. It was found that this additive stimulated growth and feed efficiency since the respective parameters in treatment 2 were higher as compared to control. In treatments 3 and 5 live bodyweight was lower in compare to control in all ages of broilers: at 14 days by 8.78 and 14.04%; at 21 day by 8.66 and 13.24%, at 35 days by 8.67 u 13.87%, respectively; however, in treatments 4 and 6 it was higher in compare to treatments 3 and 5 at the same three ages by 3.61 and 2.04%; 5.67 and 5.96%; 5.42 and 5.81%. Feed consumption per capita was similar in all treatments; however, feed conversion ratio at 35 days in treatments 3 and 5 was higher in compare to control by 12.43 and 17.62% while in treatments 4 and 6 it partly recovered though still was higher than in control by 7.05 and 11.72%, respectively. The additive was found to improve the digestibility and retention coefficients of basic nutrients (including calcium and phosphorus) from toxin-free (treatment 2) and toxic (treatments 4 and 6) feeds as well as bone mineralization in broilers. It was concluded that the additive can be effectively used for the alleviation of toxic effects of mycotoxin-contaminated corn in diets for broilers.

Keywords: mycotoxins, chitosan-based additives, broilers, average daily weight gains, digestibility and retention of dietary nutrients, bone mineralization.

For Citation: Egorov I.A., Egorova T.V., Frolov V.G. (2022) Chitosan-based complex in diets for broilers containing corn contaminated with mycotoxins. Ptitsevodstvo, 71(10): 34-38. (in Russ.)

doi: 10.33845/0033-3239-2022-71-10-34-38

References

1. Egorov IA, Lenkova TN, Manukyan VA [*et al.*] (2021) Methodical Guide on Poultry Nutrition; Fisinin VI, Egorov IA, Eds. Sergiev Posad, VNITIP, 359 pp. (in Russ.). **2.** Egorov IA, Egorova TV, Frolov VG, Ivashin II (2021) *Ptitsevodstvo*, (10):4-8; doi 10.33845/0033-3239-2021-70-10-4-8 (in Russ.). **3.** Egorov I, Egorova T, Frolov V, Ivashin I (2021) *Compound feeds*, (10):61-3; doi 10.25741/2413-287X-2021-10-4-151 (in Russ.). **4.** Kalińska A, Jaworski S, Wierzbicki M, Gołębiewski M (2019) *Intl. J. Mol. Sci.*, **20**(7):1672; doi 10.3390/ijms20071672.

Authors:

Egorov I.A.: Dr. of Biol. Sci., Prof., Academician of RAS; olga@vnitip.ru. **Egorova T.V.:** Cand. of Agric. Sci.; egorova_t@vnitip.ru. **Frolov V.G.:** General Director; sonat.nn@mail.ru. Submitted 10.08.2022; revised 08.09.2022; accepted 21.09.2022.

© Егоров И.А., Егорова Т.В., Фролов В.Г., 2022