Тишенкова Мария Сергеевна

ПОТРЕБНОСТЬ ПЕРЕПЕЛОВ В КАЛЬЦИИ И ФОСФОРЕ ПРИ ИСПОЛЬЗОВАНИИ В КОМБИКОРМАХ ФИТАЗЫ

4.2.4 — частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в отделе кормления Федерального государственного бюджетного научного учреждения Федерального научного центра «Всероссийский научно-исследовательский и технологический институт птицеводства» (ФНЦ «ВНИТИП»)

Егорова Татьяна Анатольевна,

Научный

руководитель:	доктор сельскохозяйственных наук, профессор РАН
Официальные оппоненты:	Николаев Сергей Иванович, доктор сельскохозяйственных наук, профессор, заведующий кафедрой «Кормление и разведение сельскохозяйственных животных» ФГБОУ ВО «Волгоградский государственный аграрный университет»
	Заикина Анастасия Сергеевна, кандидат биологических наук, доцент, доцент кафедры кормления животных ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева»
Ведущая организация:	ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук»
гационного совета 24.1.260.01 ждении Федеральном научном ческий институт птицеводства	остоится «09» декабря 2025 г. в 13-00 часов на заседании диссерпри Федеральном государственном бюджетном научном учрецентре «Всероссийский научно-исследовательский и технологи» (ФНЦ «ВНИТИП») по адресу: 141311, Московская область, г кая, д.10; тел.: 8(496)549-95-75, факс: 8 (496) 551-21-38,
С диссертацией можно озн www.vnitip.ru	накомиться в библиотеке и на сайте ФНЦ «ВНИТИП»:
Автореферат разослан «	z»2025г.
Ученый секретарь диссертационного совет доктор сельскохозяйств	
профессор	Ленкова Татьяна Николаевна

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследований. Перепеловодство — это одно из перспективных направлений в птицеводстве, обеспечивающее население качественными, экологически безопасными и диетическими яйцами и мясом (Голубов И.И., 2014, Кочиш И., Слесаренко Н. и др., 2015). Несмотря на то, что «перепелиный рынок» в России и странах СНГ освоен лишь на 20%, наблюдается устойчивый рост спроса на перепелиные яйца и мясо (Захарова А.А., Белокуренко Н.С., 2022).

Сотрудники ФНЦ "ВНИТИП" и ООО "Генофонд" создали и запатентовали новую мясную породу перепелов — Радонежские, полученную путем сложного скрещивания пород Фараон и Техасская белая. Порода отличается скороспелостью, при этом сохраняя свои воспроизводительные качества (Ройтер Я.С. и др., 2019). Несмотря на то, что порода Радонежские является мясной, яйценоскость у перепелок наступает уже в 40 дней; при этом они обладают высокой мышечной массой. Это создает необходимость уделять особое внимание их минеральному питанию, в частности, контролировать уровень кальция и доступного фосфора в комбикормах для обеспечения здоровья и продуктивности поголовья.

Кальциевый метаболизм в организме сельскохозяйственной птицы происходит более активно, чем у млекопитающих (*Рак Д.В., 2020*). Потребность птицы в кальции не может быть полностью удовлетворена за счет зольных элементов, содержащихся в кормах. Поэтому в рационы вводятся добавки, такие как ракушка, известняк и мел, чтобы компенсировать недостаток кальция.

Проблема обеспечения птицы фосфором также является актуальной. Основными источниками усвояемого фосфора в комбикормах служат корма животного происхождения: рыбная, мясокостная и костная мука. Однако снижение их производства и высокая стоимость приводят к значительному уменьшению, а в некоторых случаях и к исключению этих компонентов из рецептов (Егоров И.А., Андрианова Е.Н., Григорьева Е.Н., 2020).

Для покрытия дефицита фосфора в рационах для птицы промышленность освоила выпуск кальциевых фосфатов, являющихся одновременно источниками фосфора и кальция. В комбикорма для птицы вводят фосфаты кальция в виде моно-, ди- и трикальцийфосфатов, а также обесфторенные фосфаты из фосфоритов и апатитового концентрата (Егоров И.А., и др., 2018; Герасимова В.М., Румянцева A.A., 2020).

Фосфор, содержащийся в кормах растительного происхождения, зачастую не удовлетворяет потребности птицы, так как 80% его находится в виде фитатов, из которых лишь в малом количестве элемент высвобождается в пищеварительном тракте. Доля фосфора из растительных кормов составляет 35-50% от общего поступления, в то время как из животных кормов – 0-15%, а кормовых фосфатов – 50%.

Кроме этого, усвоение фосфора из растительного сырья может быть увеличено за счет добавления фермента фитазы (Ленкова Т.Н., 2015, 2016; Selim S. et. al., 2022; Ibarra A.C., Vilchez-Perales C., Mendoza O.Z., 2023). В рамках государственной программы импортозамещения российскими учеными методом микробиологического синтеза была создана и зарегистрирована в 2020 году кормовая

добавка — фитаза "Берзайм-Р ", предназначенная для повышения доступности фитатного фосфора, содержащегося в растительных кормах.

Несмотря на наличие установленных норм и требований к минеральному составу полнорационного комбикорма для перепелов, следует отметить, что эти параметры могут подвергаться изменениям. Они зависят от различных факторов, включая: породу птицы, пол, возраст и цель производства конечного продукта (яйцо, мясо, инкубационное яйцо).

Действующие нормативы потребности перепелов в кальции и фосфоре разработаны и научно обоснованы для яичных перепелов и единственной мясной породы Фараон много лет назад, когда мясная продуктивность птицы была значительно ниже по сравнению с современными мясными породами.

Поэтому научное обоснование определения оптимального уровня содержания и соотношения кальция к фосфору в рационе новой мясной породы перепелов Радонежские, а также изучение эффективности использования отечественной фитазы в комбикормах с пониженным уровнем фосфора является актуальным.

Цель и задачи исследований. Целью настоящей работы являлось установление оптимального содержания и соотношения кальция к фосфору в рационах высокопродуктивной мясной породы перепелов Радонежские, а также изучение эффективности использования концентрированного фитазного ферментного препарата — Берзайм-Р в комбикормах растительного типа для них на фоне пониженного содержания доступного фосфора.

В связи с этим были поставлены следующие задачи:

- 1. Определить оптимальные источники кальция и рациональное соотношение кальция и фосфора в комбикормах растительного типа для перепелов породы Радонежские, содержащих разные кормовые фосфаты.
- 2. Установить рациональный уровень фосфора в комбикормах растительного типа с пониженным уровнем доступного фосфора для перепелов породы Радонежские при включении нового концентрированного фитазного ферментного препарата Берзайм-Р.
- 3. Оценить экономическую эффективность применения фитазы в комбикормах для мясных перепелов.

Научная новизна исследований заключается в том, что впервые оценена продуктивность перепелов новой отечественной породы Радонежские при использовании комбикормов растительного типа с различными источниками и уровнями кальция и фосфора при разном их соотношении. Определена возможность снижения уровня фосфора в комбикормах для мясных перепелов при вводе в их состав концентрированной фитазы — Берзайм-Р. Проведена оценка экономической эффективности использования новой отечественной фитазы при рациональном уровне кальция и фосфора в комбикормах для мясных перепелов.

Новизна полученных данных подтверждена патентом № 2023103219 «Способ повышения качества костяка молодняка перепелов».

Теоретическая и практическая значимость работы. В результате проведенных исследований был определен оптимальный уровень кальция в комбикормах новой мясной породы перепелов Радонежские. Рекомендованы производству рациональные уровни содержания фосфора с применением концентрированной фитазы в комбикормах для перепелов, дефицитных по содержанию общего и доступного фосфора.

Научная разработка по теме диссертации отмечена золотой медалью за разработку «Способ повышения качества костяка молодняка перепелов» на XXVII Московском Международном салоне изобретений и инновационных технологий «Архимед», 2024 г.

Методология и методы исследований. Для достижения поставленных задач были проведены три опыта и производственная проверка на перепелах мясного направления высокопродуктивной породы Радонежские с суточного до 42суточного возраста. В процессе научно-практических экспериментов применялись общепринятые, актуальные методы, включая зоотехнические, биохимические, экономические и статистические подходы. Все исследования были осуществлены в соответствии с принятой методологией, касающейся вопросов питания, обмена веществ и здоровья птицы в сельском хозяйстве. Экспериментальная работа осуществлялась с применением передового зарубежного и отечественного оборудования, а также комплекса ГОСТированных биохимических, зоотехнических и экономических анализов, проводимых с использованием аттестованных приборов. Обработка цифрового материала, полученного в экспериментах, проведена методом вариационной статистики по Н.А. Плохинскому (Руководство по биометрии для зоотехников, 1969), на персональном компьютере с использованием программного обеспечения Microsoft Excel. Достоверные разности обозначали: *-p<0.05, **-p<0.01, ***-p<0.001.

Положения диссертации, выносимые на защиту:

- 1. Продуктивность перепелов при использовании комбикормов растительного типа с различными источниками кальция и рациональным соотношением кальция и фосфора, содержащими разные кормовые фосфаты.
- 2. Физиолого-биохимическое обоснование использования новой отечественной фитазы Берзайм-Р в комбикормах из растительных компонентов для перепелов с пониженным уровнем фосфора.
- 3. Экономическая эффективность использования новой отечественной фитазы при рациональном уровне фосфора в комбикормах для мясных перепелов.

Степень достоверности и апробации результатов. В ходе исследований полученные данные были проанализированы с использованием методов вариационной статистики. Для оценки значимости полученных результатов был установлен критерий достоверности. Основные положения диссертационной работы были доложены и обсуждены на: Международной научно-практической конференции

«Вклад аграрных ученых в реализацию десятилетия науки и технологий в Российской Федерации», 2023 г.; Международной научно-практической конференции молодых ученых «Преемственность в науке — основа устойчивого развития аграрной науки и производства», Казахстан, 2023 г.; научно-практической конференции для молодых ученых «Молодежная наука в современной ветеринарии, зоотехнии и биотехнологии: традиции, инновации и приоритеты», 2023 г.; Международной научно-практической конференции «Достижения и перспективы развития птицеводства», 2024 г.; XXI Международной конференции «Мировое и Российское птицеводство: динамика и перспективы развития — научные разработки по генетике и селекции сельскохозяйственной птицы, кормлению, инновационным технологиям производства и переработки яиц и мяса, ветеринарии, экономики отрасли», 2024 г.

Личный вклад соискателя состоит в непосредственном участии в получении исходных данных в научных экспериментах, их производственной проверке, обработке и интерпретации экспериментальных данных, подготовке публикаций по выполненной работе.

Публикации результатов исследований. По результатам исследований опубликовано 7 работ, которые отражают основное содержание диссертации, в том числе 2 в рецензируемом журнале «Птицеводство», рекомендованном Высшей аттестационной комиссией при Министерстве науки и высшего образования Российской Федерации. Получен патент на изобретение РФ.

Объем и структура диссертации. Диссертационная работа изложена на 146 страницах компьютерного текста, содержит 51 таблицу, 6 рисунков и состоит из следующих разделов: введение, обзор литературы, материалы и методы исследований, результаты исследований, обсуждение результатов, заключение, предложение производству, список литературы и приложения. Список литературы включает 186 источников, из них 120 на иностранном языке.

2. МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИЙ.

Работа была выполнена в отделе кормления ФНЦ «ВНИТИП» и в ООО «Генофонд» в период 2021-2024 гг.

Было проведено: три научно-производственных опыта на перепелах породы Радонежские и производственная проверка.

Для проведения данной работы суточных перепелят отбирали из одной партии инкубируемых яиц, размещали в клеточной батарее БВМ-Ф-4Ц на одном ярусе, учитывая необходимость выровненности по живой массе суточного молодняка. Выращивание перепелов велось без разделения по полу до 35 -суточного возраста, далее птицу рассаживали в клетки с учетом половой принадлежности.

Световой режим для молодняка перепелов соответствовал рекомендациям ВНИТИП (Выращивание и содержание перепелов яично-мясного направления, 2014) и регулировался автоматически, составлял от 24 до 17 часов, в зависимости от возраста.

Условия содержания в группах были одинаковыми, за исключением изучаемого фактора.

Кормление перепелов всех групп было двухфазным, по возрастным периодам 1-4 и 5-6 недель жизни, для обеих фаз были использованы россыпные растительные пшенично-кукурузно-соевые комбикорма, сбалансированные и выровненные по питательности согласно рекомендациям ВНИТИП (Методическое пособие по кормлению сельскохозяйственной птицы, 2018, 2021).

Задачей первого научно-производственного опыта являлось: определить влияние разных источников кальция (известняк, мел, ракушка) и фосфора (три-кальцийфосфат, дикальцийфосфат, дефторированный фосфат, монокальцийфосфат) в комбикормах из растительных компонентов на продуктивные качества перепелов породы Радонежские.

Схема опыта 1 представлена в таблице 1.

Таблица 1– Схема опыта 1, n=35 в каждой группе

Группа	Особенности кормления в возрасте, недель								
	1-4	5-6							
1 к	рекомендациям ВНИТИП (2018г.), с сод	тельного типа с питательностью согласно ержанием 1,0% кальция, 0,76% общего и							
	0,45% доступного фосфора. В качестве источника кальция и фосфора использовался трикальцийфосфат (ТКФ)								
2 o	ПК, сбалансированный по всем питательн ция использовался известняк, фосфора – ди	ым веществам. В качестве источника каль- икальцийфосфат (ДКФ)							
3 о	ПК, сбалансированный по всем питательн ция использовался известняк, фосфора – де	ым веществам. В качестве источника кальефторированный фосфат (ДФФ)							
4 o	ПК, сбалансированный по всем питательн ция использовался известняк, фосфора – м	ым веществам. В качестве источника каль- онокальцийфосфат (МКФ)							
5 o	ПК, сбалансированный по всем питательн ция использовался мел, фосфора – монокал	ым веществам. В качестве источника каль- выцийфосфат (МКФ)							
6 0	ПК, сбалансированный по всем питательн ция использовалась ракушка, фосфора – мо	ым веществам. В качестве источника каль- онокальцийфосфат (МКФ)							

^{*}Соотношение кальция к фосфору общему и доступному во всех группах было одинаковым и составило 1,3:1 и 2,2:1 соответственно.

Задачей второго научно-производственного опыта являлось определение рационального соотношения кальция и фосфора (кальциево-фосфорного отношения, КФО) в комбикормах растительного типа с разными уровнями кальция, обеспечивающих лучшие продуктивные качества мясных перепелов породы Радонежские. В качестве источника кальция использовался известняк, фосфора монокальцийфосфат (лучшая группа из опыта 1).

Схема опыта 2 представлена в таблице 2.

Таблица 2 – Схема опыта 2, n=75 в каждой группе

	a 2 choma chisha 2, ii , c s nangen ip.	,							
Группа	Особенности кормления в возрасте, недель								
	1-4	5-6							
1 к	Полнорационный комбикорм (ПК) с питательностью согласно рекомендациям ВНИ-								
	ТИП (2018г.) при полном исключении кормов животного происхождения, с уровнем								
	кальция 1,0%, общего и доступного фосфора 0,76 и 0,45% при их соотношении 1,3:1 и								
	2,2:1 соответственно.								
2 o	ПК, сбалансированный по всем питательным веществам, с уровнем кальция 0,9%,								
	общего и доступного фосфора 0,76 и 0,45%	б при их соотношении 1,1:1 и 2:1 соответ-							
	ственно.								
3 o	ПК, сбалансированный по всем питательным веществам, с уровнем кальция 1,1%,								
	общего и доступного фосфора 0,76 и 0,45%при их соотношении 1,4:1 и 2,4:1 соответ-								
	ственно.								
4 o	ПК, сбалансированный по всем питательным веществам, с уровнем кальция 1,2%,								
	общего и доступного фосфора 0,76 и 0,45%при их соотношении 1,5:1 и 2,6:1 соответ-								
	ственно.								
5 o	ПК, сбалансированный по всем питатель-	ПК, сбалансированный по всем пита-							
	ным веществам, с уровнем кальция 1,0%,	тельным веществам, с уровнем: кальция							
	общего и доступного фосфора 0,76 и	0,9%, общего и доступного фосфора 0,76							
	0,45%при их соотношении 1,3:1 и 2,2:1	и 0,45%при их соотношении 1,1:1 и 2:1							
	соответственно. соответственно.								

Задачей третьего научно-производственного опыта являлось изучение возможности применения концентрированного фитазного ферментного препарата Берзайм-Р в комбикормах растительного типа с различным соотношением кальция и фосфора при пониженном уровне фосфора для перепелов породы Радонежские. Схема опыта 3 представлена в таблице 3.

Таблица 3 – Схема опыта 3, n=35 в каждой группе

Группа	Особенности кормления
1 к	Полнорационный комбикорм (ПК) растительного типа с питательностью согласно
	рекомендациям ВНИТИП с уровнем кальция 1,0 %, общего и доступного фосфора
	0,76 и 0,45% при их соотношении1,3:1 и 2,2:1 соответственно
2 o	ПК с уровнем кальция 1,0%, общего и доступного фосфора 0,70 и 0,40% при их со-
	отношении1,4:1 и 2,5:1 соответственно
3 o	ПК с уровнем кальция 1,0%, общего и доступного фосфора 0,70 и 0,40% при их со-
	отношении 1,4:1 и 2,5:1 соответственно + Берзайм-Р в количестве 12 г/т корма
4 o	ПК с уровнем кальция 1,0%, общего и доступного фосфора 0,65 и 0,35% при их со-
	отношении1,5:1 и 2,9:1 соответственно
5 o	ПК с уровнем кальция 1,0%, общего и доступного фосфора 0,65 и 0,35% при их со-
	отношении1,5:1 и 2,9:1 соответственно + Берзайм-Р в количестве 12 г/т корма
6 к	ПК с уровнем кальция 0,9%, общего и доступного фосфора 0,76 и 0,45% при их со-
	отношении1,2:1 и 2:1 соответственно
7 o	ПК с уровнем кальция 0,9%, общего и доступного фосфора 0,70 и 0,40% при их со-
	отношении1,3:1 и 2,3:1 соответственно
8 o	ПК с уровнем кальция 0,9%, общего и доступного фосфора 0,70 и 0,40% при их со-
	отношении 1,3:1 и 2,3:1 соответственно + Берзайм-Р в количестве 12 г/т корма
9 o	ПК с уровнем кальция 0,9%, общего и доступного фосфора 0,65 и 0,35% при их со-
	отношении1,4:1 и 2,6:1 соответственно
10 o	ПК с уровнем кальция 0,9 %, общего и доступного фосфора 0,65 и 0,35 % при их
	соотношении 1,4:1 и 2,6:1 соответственно + Берзайм-Р в количестве 12 г/т корма

При проведении исследований учитывали следующие показатели:

- сохранность поголовья, (%) путем ежедневного учета павших перепелов;
- живую массу перепелов в суточном, 1-, 2-, 3-, 4-, 5- и 6 недельном возрастах, путем индивидуального взвешивания всего поголовья;
- абсолютный и среднесуточный прирост живой массы;
- потребление корма ежедневно, путем учета заданного количества комбикорма и остатков (Γ);
- затраты корма на единицу прироста продукции (кг) расчетным путем по данным расхода корма и продуктивности;
- индекс эффективности выращивания;
- мясные качества тушек (убойный выход; масса сердца, печени, желудка; выход мышц груди, бедра и голени) путем проведения анатомической разделки в конце выращивания птицы в соответствии с Методическими рекомендациям ВНИТИП, 2014 г.;
- морфологические показатели яиц (в начальной стадии яйцекладки) во втором и третьем опытах (толщина скорлупы -на микрометре (с индикатором часового типа); прочность скорлупы на приборе Egg Force Reader;
- переваримость и использование питательных веществ корма по Рекомендациям ВНИТИП (2013 г) в физиологических опытах;
- содержание общего азота (%) в кормах, помете, мышцах (методом Кьельдаля);
- содержание аминокислот (%) в мышцах (методом ионообменной хроматографии на автоматическом анализаторе AAA-T 339);
- содержание сырого жира (%) в кормах, помете, мышцах (в аппарате Сокслета);
- содержание сырой клетчатки (%) в кормах, помете (методом кислотнощелочной обработки, описанным П.Т. Лебедевым и др. (1976);
- содержание (%) кальция (на атомно-абсорбционном спектрометре) и фосфора (фотометрическим методом) в кормах и помете;
- содержание сырой золы (%) в кормах, помете, мышцах (методом сухого озоления образца);
- содержание кальция и фосфора в крови перепелов (на полуавтоматическом биохимическом анализаторе BS-3000P, используя наборы по определению кальция и фосфора компании «ДИАКОН-ВЕТ);
- содержание золы, кальция, фосфора и микроэлементов в большеберцовых костях перепелов титрометрическим методом;
- содержание витаминов A, E, B₂ в печени (методом жидкостной хроматографии высокого разрешения).

Химический состав кормов, помета и мышц изучали в лаборатории биохимического анализа ФНЦ «ВНИТИП» по общепринятым методикам.

По результатам производственной проверки дана оценка экономической эффективности использования новой отечественной фитазы при рациональном уровне кальция и фосфора в комбикормах для мясных перепелов.

Схема приведена в таблице 4.

Таблица 4 – Схема производственной проверки, n=250 в каждой группе

Вариант	Особенности кормления
Базовый	Полнорационный комбикорм (ПК) растительного типа с питательностью со-
	гласно рекомендациям ВНИТИП с уровнями кальция – 1,0%, общего и доступ-
	ного фосфора -0.76 и 0.45% , при их соотношении $1.3:1$ и $2.2:1$ соответственно
Новый	Полнорационный комбикорм (ПК) растительного типа с питательностью со-
	гласно рекомендациям ВНИТИП с уровнями кальция – 1,0%, общего и доступ-
	ного фосфора -0.65 и 0.35% , при их соотношении $1.5:1$ и $2.9:1$ соответственно
	+ Берзайм-Р с активностью 50000 ед./г в количестве 12 г/т корма

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1. Исследование 1. Продуктивность перепелов породы Радонежские, выращенных на комбикормах из растительных компонентов с использованием разных источников кальция и фосфора

Основные результаты выращивания перепелов в группах с разными источниками кальция и фосфора при использовании комбикормов растительного типа представлены в табл. 5.

Сохранность перепелов во всех группах была 100%-ной. В 6-недельном возрасте их средняя живая масса в опытных группах превосходила показатель контрольной группы на 1,1-2,7%, с лучшим результатом в группе 4. По самцам преимущество опытных групп над контролем составило 0,7-2,4% при достоверной разности в 2,4% (p<0,05) в группе 4; по самкам — 1,4-3,0% при достоверной разности в группах 5 (2,4%, p<0,01) и 6 (2,7%, p<0,001). В группе 4 разность была максимальной (3,0%), хотя и недостоверной.

Таблица 5 – Зоотехнические показатели выращивания перепелов (опыт 1)

Показатель		Группа							
	1 к	2 o	3 o	4 o	5 o	6 o			
Сохранность поголовья, %	100,0	100,0	100,0	100,0	100,0	100,0			
Средняя живая масса в возрасте 6-недель(г),	319,8	323,3	326,8	328,4	326,2	327,5			
в т.ч. самцы	298,0	300,1	303,7	305,2	302,5	304,6			
	$\pm 2,5$	$\pm 2,83$	±3,6	±2,0*	$\pm 3,75$	$\pm 2,45$			
самки	341,6	346,4	350,1	351,8	349,8	350,8			
	$\pm 1,46$	±1,8	$\pm 2,88$	$\pm 3,64$	$\pm 2,19$	±1,6			
					**				
Среднесуточный прирост живой массы, г	7,40	7,48	7,57	7,61	7,56	7,58			
Потребление корма на 1 голову за период опы-									
та, кг	0,980	0,976	0,986	0,988	0,981	0,985			
Затраты корма на 1 кг прироста живой									
массы, кг	3,152	3,102	3,099	3,091	3,092	3,091			
Индекс продуктивности, ед.	24,16	24,82	25,11	25,30	25,12	25,23			
Переваримость, %: сухого вещества корма	71,3	71,5	71,9	72,5	72,0	72,1			
протеина	91,0	91,4	91,5	92,3	91,6	91,7			
жира	75,9	75,9	76,0	76,2	75,8	76,0			
клетчатки	19,8	20,7	20,8	21,3	20,7	20,9			
Использование, %: азота	50,9	51,7	52,0	52,9	52,2	52,5			
кальция	34,1	37,1	37,3	38,3	37,3	37,5			
фосфора	24,0	24,8	25,1	26,0	25,2	25,5			

^{*}p<\(\overline{0.05}; \text{**p}<0.01; \text{***p}<0.001\)

Среднесуточный прирост живой массы перепелов за 42 дня выращивания в опытных группах превосходил показатель контроля на 1,1-2,8% и был максимальным в группе 4.

Затраты корма на единицу прироста живой массы во всех опытных группах были ниже контроля. В группах перепелов 4-6, получавших в качестве источника фосфора МКФ и три разных источника кальция, этот показатель был практически одинаковым ниже контроля на 1,9%, тогда как у птицы групп 2 (ДКФ + известняк) и 3 (ДФФ + известняк) разница с контролем составила 1,6 и 1,7% соответственно.

Индекс эффективности выращивания птицы в опытных группах был выше по сравнению с контролем на 2,7-4,7%, максимальное значение было получено в группе 4.

Лучшие результаты по переваримости и использованию питательных веществ комбикормов показала птица опытной группы 4: по переваримости сухого вещества перепела данной группы превышали контроль на 1,2%, сырой клетчатки — на 1,5%, сырого протеина — на 1,3%, сырого жира — на 0,3%, по использованию азота и фосфора — на 2,0%, кальция — на 4,2%.

По накоплению в печени витаминов лидировала птица группы 4: содержание витамина A в ней составило 142,33 мкг/г (против 140,14 мкг/г в контроле), E-20,05 мкг/г (против 19,00 мкг/г в контроле), $B_2-12,73$ мкг/г (против 12,19 мкг/г в контроле).

Качество костяка перепелов было самым высоким в группе 4. Так, содержание сырой золы в большеберцовой кости птицы превосходило уровень контроля на 1,81%, кальция — на 1,48%, фосфора — на 1,66%, цинка — на 1,94%, марганца — на 8,92%, лишь содержание меди было ниже контроля на 5,75%.

По содержанию кальция в сыворотке крови перепелов лучшие показатели были у перепелов группы 4, где данный показатель составлял 2,15 ммоль/л и превышал уровень контроля на 7,5%, тогда как остальные опытные группы превосходили контроль на 1,0-4,5%. По содержанию фосфора также лучшей была птица группы 4 (1,2 ммоль/л, выше контроля на 20%), тогда как в остальных опытных группах данный показатель был на уровне контроля (0,9-1,1 ммоль/л против 1,0 ммоль/л в контроле). Группа 4 превосходила все остальные группы и по содержанию в сыворотке крови натрия, калия и цинка (выше контроля на 15,8; 26,4 и 14,8% соответственно).

По содержанию белка и жира в грудных мышцах перепелов статистически значимых и закономерных различий между группами не установлено, эти показатели по всем группам находились в пределах 21,35-21,68 и 2,56-2,81% соответственно. Содержание суммы всех аминокислот у птицы опытных групп 2 и 3 было ниже по сравнению с контролем на 0,44 и 0,65% соответственно, а у опытных групп 4, 5 и 6 – выше на 0,09; 0,27 и 0,30%. Отношение сумм незаменимых и заменимых аминокислот во всех группах было близким и находилось в пределах 1,02-1,04.

Содержание белка в ножных мышцах перепелов находилось по всем группам в пределах 18,58-18,86%, содержание жира -4,40-5,01%. Содержание суммы всех аминокислот было минимальным у перепелов контрольной группы, а в опытной

группе оно превосходило контроль на 0,27-0,86% и было максимальным в группе 3. Соотношение сумм незаменимых и заменимых аминокислот у перепелов во всех группах находилось в пределах 0,96-0,99.

По аминокислотному профилю грудных и ножных мышц перепелов значимых и закономерных различий между группами не установлено.

Масса потрошеной тушки у перепелов обоих полов была максимальной в группе 4 (по самцам 208,03 г против 198,49 г в контроле, по самкам — 245,21 г против 234,44 г в контроле), как и убойный выход (68,59 и 70,12% по самцам и самкам, соответственно, против 67,15 и 69,30% в контроле). По выходу отдельных частей тушки и съедобных внутренних органов перепелов значимых и закономерных различий между группами не установлено.

Комбинация источников кальция и фосфора, использованная в группе 4, показавшей лучшие зоотехнические результаты, была далее использована при проведении исследования 2.

3.2. **Исследование 2**. Продуктивность перепелов породы Радонежские, выращенных на комбикормах растительного типа с рациональным соотношением кальция к фосфору

Основные результаты выращивания перепелов в группах с рациональным соотношением кальция к фосфору при использовании комбикормов растительного типа представлены в табл. 6.

Сохранность перепелов во всех группах была 100%-ной. В 6-недельном возрасте отставание от контроля по живой массе опытных групп перепелов 3 и 4, получавших комбикорма с повышенным уровнем кальция, в среднем по самцам и самкам составило 1,9 и 2,1%, соответственно, тогда как в группах 2 и 5 оно было лишь 0,4 и 0,3%.

Таблица 6 – Зоотехнические показатели перепелов (опыт 2)

Tuomingu o Gootemin teekine nokusutesini nepenesiob (onbit 2)							
Показатель	Группа						
	1 к	2 o	3 o	4 o	5 o		
Сохранность поголовья, %	100,0	100,0	100,0	100,0	100,0		
Средняя живая масса в возрасте 6-недель (г),	354,5	353,1	347,8	347,1	353,4		
в т.ч. самцы	329,0	328,0	320,8*	319,5	329,3		
	±1,82	±1,26	$\pm 3,38$	±3,57	±1,96		
самки	376,5	374,2	372,0	371,6	373,9		
	$\pm 2,28$	±3,46	$\pm 2,07$	±2,13	$\pm 2,77$		
Среднесуточный прирост живой массы, г	8,23	8,19	8,07	8,05	8,20		
Потребление корма на 1 голову за период опыта, кг	1,017	1,015	1,009	1,011	1,018		
Затраты корма на 1 кг прироста живой массы, кг	2,941	2,950	2,976	2,990	2,956		
Индекс продуктивности, ед.	28,70	28,50	27,83	27,64	28,47		
Переваримость, %:сухого вещества корма	72,1	72,0	71,1	70,5	71,9		
протеина	90,4	90,3	89,3	89,0	90,3		
жира	76,3	75,9	75,0	74,8	76,0		
клетчатки	20,6	20,0	19,7	18,9	20,3		
Использование, %: азота	52,1	51,9	51,0	50,5	51,8		
кальция	35,9	35,3	35,6	35,8	35,4		
фосфора	25,5	25,1	25,0	24,5	25,0		

^{*}p<0,05

Живая масса самцов групп 3 и 4 была ниже контроля на 2,5% (p<0,05) и 2,9%, соответственно, самок — на 1,2 и 1,3%. Самцы группы 2 отставали от контроля всего на 0,3%, а группы 5 превосходили контроль по живой массе на 0,1%; самки этих групп отставали от контроля на 0,6 и 0,7% соответственно. Среднесуточный прирост живой массы за 6 недель в группах 3 и 4 был ниже уровня контроля на 1,9 и 2,2% соответственно, а в группах 2 и 5 — на 0,5 и 0,4%.

В группах птиц 3 и 4 затраты корма на 1 кг прироста живой массы были выше, чем в контрольной группе, на 1,2 и 1,7% соответственно, а в группах 2 и 5 — всего на 0,3 и 0,5%. В результате индекс продуктивности перепелов в группах 3 и 4 был ниже контроля на 3,03 и 3,69%, а в группах 2 и 5 — на 0,70 и 0,80% соответственно. Переваримость и использование питательных веществ в группах 3 и 4 была хуже, чем в контроле, а в опытных группах 2 и 5 — близки показателям контрольной группы.

По накоплению витамина A в печени все опытные группы перепелов отставали от уровня контроля (151,23 мкг/г): группы 3 и 4 — на 1,30 и 1,57%, соответственно, группы 2 и 5 — на 0,74 и 0,75%. По витамину E в группах 3 и 4 различия составили 5,07 и 8,09%, а группы 2 и 5 превосходили контроль на 5,02 и 3,62% соответственно. Наиболее выраженными были различия по накоплению витамина B_2 : во всех опытных группах его количество было ниже, чем в контрольной группе (12,41 мкг/г), причем группы 3 и 4 отставали на 14,91 и 19,18%, соответственно, а группы 2 и 5 — на 11,36 и 10,31%.

Более высокие значения средней толщины скорлупы яиц, снесенных перепелками в начале периода яйценоскости, в группах 3 и 4 (174,1 и 174,6 мкм против 171,5-173,6 мкм в остальных группах), а также прочности скорлупы (1,448 и 1,456 кг/см² против 1,421-1,438 кг/см² в остальных группах) свидетельствуют о том, что уровни кальция в рационе, превышающие 1,0%, эффективны для кормления перепелок-несушек, но высоки для растущего молодняка.

Повышенные уровни кальция и КФО в рационах привели к снижению качества костяка птицы. Так, несмотря на более высокие уровни кальция в рационах опытных групп 3 и 4, его содержание в большеберцовых костях перепелов этих групп было ниже уровня контроля (22,54%) на 5,50 и 5,41% соответственно, тогда как у групп 2 и 5 — на 2,09 и 1,82%. Группы 3 и 4 также отставали от остальных групп по содержанию в большеберцовой кости сырой золы, фосфора, цинка, меди и марганца. Аналогично, концентрация ионизированного кальция в сыворотке крови перепелов групп 3 и 4 была ниже на 6,57 и 4,04%, соответственно, по сравнению с контролем, где данный показатель был максимальным (1,98 ммоль/л), а у опытных групп 2 и 5 он был ниже контроля на 3,54 и 2,02% соответственно. Концентрация фосфора в плазме крови перепелов соответствовала аналогичной закономерности.

КФО рациона не оказало существенного влияния на химический состав грудных и ножных мышц перепелов, хотя можно отметить, что на уровне тенденции мышцы птицы групп 3 и 4, получавших комбикорма с максимальными значениями КФО, характеризовались несколько меньшей пищевой ценностью. По мясным качествам группы также различались незначительно и без видимой связи с составом рациона.

Можно заключить, что повышение уровня кальция выше рекомендуемого значения -1,0%, а КФО - с 1,3:1 и 2,2:1 по общему и доступному фосфору до 1,4-1,5:1 и 2,4-2,6:1, соответственно, оказало негативное влияние на рост перепелов породы Радонежские. При этом снижение уровня кальция до 0,9% (и соответствующее снижение КФО до 1,1:1 и 2,0:1) на всем протяжении выращивания (опытная группа 2) или только во вторую его фазу (опытная группа 5) поддерживало рост перепелов практически на уровне контроля. Определенные в этом опыте оптимальные уровни кальция (1,0 и 0,9%) были использованы при проведении исследования 3.

3.3. Исследование 3. Продуктивность перепелов породы Радонежские, выращенных на комбикормах растительного типа с различным соотношением кальция и фосфора при пониженном уровне фосфора и включении концентрированного фитазного ферментного препарата Берзайм-Р

Таблица 7 – Зоотехнические показатели перепелов (опыт 3)

Показатель	Группа									
	1 к	2 o	3 o	4 o	5 o	6 к	7 o	8 o	9 o	10 o
Сохранность поголо-	97,14	97,14	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
вья, %										
Средняя живая масса в	337,8	334,4	347,3	331,7	346,7	335,1	330,0	340,8	325,0	338,5
возрасте										
6-недель (г),										
в т.ч. самцы	312,4	310,1	323,7	310,9	324,7	312,8	308,1	318,3	307,1	313,4
	±1,6	±2,01	±1,97 ***	±2,10	±1,67 ***	±2,8	±2,16	±1,25 **	±2,27	±2,04
самки	363,2	358,7	370,8	352,5	368,7	357,4	351,9	363,3	342,8	363,6
	±4,58	±3,5	±3,7	±4,03	±2,69	±2,72	±4,49	±3,51	±5,97	±4,08
Среднесуточный при-	7,84	7,76	8,06	7,69	8,04	7,77	7,65	7,91	7,53	7,85
рост живой массы, г										
Потребление корма на										
1 голову за период	0,991	0,994	0,982	0,999	0,974	0,987	0,986	1,007	0,982	1,004
опыта, кг										
Затраты корма на 1 кг	3,012	3,051	2,901	3,093	2,883	3,025	3,071	3,032	3,106	3,044
прироста живой мас-										
сы, кг										
Индекс продуктивно-	25,94	25,35	28,50	25,53	28,63	26,38	25,58	26,76	24,91	26,48
сти, ед.								0		
Переваримость, %:	72,6	71,9	73,5	71,3	73,7	72,4	71,1	72,8	70,3	72,5
сухого вещества кор-										
ма	0.4.7	02.0	05.0	02.0	05.2	04.1	02.0	04.6	01.5	04.0
протеина	94,7	93,9	95,0	92,8	95,2	94,1	92,0	94,6	91,5	94,0
жира	82,4	81,7	86,6	81,3	87,1	82,0	80,7	82,4	80,1	82,2
клетчатки	22,1	27,7	23,2	21,0	23,9	22,0	21,1	21,9	19,9	22,7
Использование, %:	52.5	51.2	540	50.0	540	52.2	50.4	52.0	40.4	51.0
	52,5	51,3	54,0	50,8	54,9	52,3	50,4	52,0	48,4	51,9
кальция	31,8	31,0	36,9	30,3	36,8	31,0	29,3	31,9	28,7	31,7
фосфора	28,0	27,6	30,0	27,4	30,4	27,7	26,9	27,3	26,1	27,0

^{**}p<0,01; ***p<0,001

Сохранность поголовья во всех группах была 100%-ной, за исключением групп 1 и 2, где она составила 97,14%. Вскрытие павшей птицы показало, что ее отход не был связан с изучаемыми кормовыми факторами.

Снижение уровня фосфора (или повышение КФО) при постоянном уровне кальция в группах, не получавших препарат фитазы, приводило к дозозависимому ухудшению роста перепелов на всем протяжении периода их выращивания. При уровне кальция 1,0% отставание по средней живой массе в 6 недель от контрольной группы 1 у опытных групп 2 и 4 составило 1,0 и 1,8% соответственно, по самщам - 0,7 и 0,5%, по самкам — 1,2 и 2,9%. При уровне кальция 0,9% отставание по средней живой массе от контрольной группы 6 у опытных групп 7 и 9 было 1,5 и 3,0%, по самцам — 1,5 и 1,8%, по самкам — 1,5 и 4,1% соответственно. Видно, что при минимальном уровне фосфора при обоих уровнях кальция (группы 4 и 9) от соответствующих контрольных групп 1 и 6 было наибольшим.

Сравнение групп, получавших одинаковые уровни фосфора при разных уровнях кальция и при отсутствии фитазы в рационах, показывает, что более низкий уровень кальция (0,9%) ухудшал рост перепелов в сравнении с более высоким (1,0%), причем этот эффект усиливался со снижением уровня фосфора. Так, их средняя живая масса в 6 недель у контрольной группы 6 была ниже контрольной группы 1 на 0,8%, группы 2 - на 1,0%, а группы 7 —на 2,3%, группы 4 - на 1,8%, а группы 9 —на 3,0%.

Данные по среднесуточному приросту живой массы следовали аналогичной закономерности. Среди всех групп, не получавших ферментный препарат, он был максимальным в контрольной группе 1; в опытных группах 2 и 4 - ниже на 1,0 и 1,9% соответственно, в контрольной группе 6 — на 0,9%, в опытных группах 7 и 9 — на 2,4 и 4,0%. Отставание опытных групп 7 и 9 от контрольной группы 6 по данному показателю составило 1,5 и 3,1% соответственно.

Ввод в рационы фитазного препарата Берзайм-Р позволил компенсировать этот негативный эффект снижения кальциево-фосфорной питательности рационов на рост перепелов. Так, при более высоком уровне кальция ввод фитазы в рационы опытных групп 3 и 5 способствовал повышению средней живой массы перепелов по сравнению с контрольной группой 1 на 2,8 и 2,6% соответственно, а опытных групп 8 и 10 по сравнению с контрольной группой 6 — на 1,7 и 1,0%. При этом самцы лучше отреагировали на ввод в рационы фитазы: их превосходство по живой массе в группах 3 и 5 над контрольной группой 1 в 6 недель составило 3,6 и 3,9%, тогда как самок — 2,0 и 1,5%; превосходство самцов групп 8 и 10 над контрольной группой 6 — 1,8 и 0,2%, самок — 0,3 и 0,1%. Среднесуточный прирост живой массы в опытных группах 3 и 5 превысил показатель контрольной группы 1 на 2,8 и 2,6% соответственно, а групп 8 и 10 по сравнению с контрольной группой 6 — на 1,8 и 1,0%.

Затраты корма на 1 кг прироста живой массы по всем группам находились в пределах от 2,883 (группа 5) до 3,106 кг (группа 9), причем при более высоком уровне кальция (группы 1-5) они были, в целом, ниже, чем при более низком: в группах 6-10 данный показатель был выше уровня контрольной группы 1 на 0,4-3,1%. Следует также отметить, что конверсия корма улучшалась при вводе в рационы фитазы на фоне более высокого уровня кальция в рационах. При уровне

кальция 1,0% (группы 1-5) повышение КФО без использования фитазы (группы 2 и 4) привело к ухудшению данного показателя по сравнению с контрольной группой 1 на 1,3 и 2,7% соответственно, тогда как ввод фитазы с аналогичными значениями КФО (группы 3 и 5) улучшил конверсию корма по сравнению с контрольной группой 1 на 3,7 и 4,3%. При более низком уровне кальция (группы 6-10) конверсия корма во всех опытных группах, включая группы, получавшие фитазу, превосходила уровень контрольной группы 6 на 0,2-2,7%.

Индекс продуктивности перепелов за 6 недель выращивания по всем группам находился в пределах от 24,91 (группа 9) до 28,63 (группа 5). При более высоком уровне кальция (1,0%, группы 1-5) повышение КФО без ввода фермента (группы 2 и 4) привело к снижению данного показателя по сравнению с контрольной группой 1 на 2,3 и 1,6% соответственно, а ввод фитазы в рационы с аналогичными повышенными значениями КФО (группы 3 и 5) позволили повысить его по сравнению с контрольной группой 1 на 9,9 и 10,4%. При более низком уровне кальция (0,9%, группы 6-10) аналогичное повышение КФО без использования фермента (группы 7 и 9) способствовало более выраженному снижению индекса продуктивности по сравнению с контрольной группой 6 на 3,0 и 5,6% соответственно, а ввод фитазы в рационы с аналогичными КФО (группы 8 и 10) позволил превысить показатель контрольной группы 6 лишь на 1,4 и 0,4%.

Следовательно, при снижении как уровня кальция, так и фосфора в рационе при отсутствии в нем фитазного препарата живая масса перепелов, скорость ее прироста и конверсия корма ухудшаются. Ввод в рационы ферментного препарата Берзайм-Р успешно компенсирует негативный эффект от повышения КФО за счет снижения уровней общего и доступного фосфора, при этом положительное влияние данного фитазного препарата на эффективность роста и конверсию корма был лучше выражен при более высоком уровне кальция.

Переваримость и использование питательных веществ корма были самыми высокими в опытной группе 5, в которой отмечена самая высокая среди всех групп переваримость сухого вещества (выше остальных групп на 0,2-3,4%), сырого протеина (на 0,2-3,7%), сырого жира (на 0,5-7,0%), сырой клетчатки (на 0,7-4,0%), лучшее использование азота (на 0,9-6,5%) и фосфора (на 0,4-4,3%). Лишь по использованию кальция группа 5 незначительно (всего на 0,1%) уступала опытной группе 3.

По содержанию витаминов A, E и B_2 в печени опытная группа 5 превосходила все остальные группы.

Наиболее крепкий костяк был в опытных группах перепелов 5 и 3.Так, по содержанию сырой золы большеберцовые кости перепелов группы 5 превосходили все остальные группы на 0,32-2,78%, кальция — на 0,15-1,79%, уступая лишь группе 3 (на 0,18%). По содержанию фосфора в них группы 1-4 уступали группе 5 (на 0,11-0,52%), тогда как при более низком уровне кальция в корме группы, не получавшие фитазу (6к, 7 и 9), уступали группе 5 на 0,15-0,36%, тогда как группы 8 и 10, получавшие фитазу, были по этому показателю практически на одном уровне с группой 5. По содержанию цинка и марганца костяк перепелов группы 5 также превосходил все остальные группы, меди - различался незначительно.

Величина депо кальция в плазме крови зависела от его уровня в рационе: в группах перепелов 1-5, получавших комбикорма, содержащие 1,0% кальция, концентрация этого элемента в сыворотке крови находилась в пределах 2,95-3,20 ммоль/л, а в группах 6-10, получавших в рационе 0,9% кальция — 2,50-2,90 ммоль/л. Концентрация фосфора в сыворотке крови при уменьшении уровня фосфора в рационе снижалась: в группах перепелов 2 и 4 — до 1,0 и 0,9 ммоль/л против 1,1 ммоль/л в контрольной группе 1; в группах 7 и 9 — до 0,8 и 0,7 ммоль/л против 1,0 ммоль/л в контрольной группе 6. Однако ввод фермента повышал ее выше уровня соответствующей контрольной группы, содержащей высокий уровень кальция в рационе (до 1,2 и 1,3 ммоль/л в опытных группах 3 и 5), или практически до уровня контроля — при более низком уровне кальция (до 1,0 и 0,9 ммоль/л в опытных группах 8 и 10). Можно констатировать, что величина депо фосфора в крови и его реакция на ввод в рацион фитазы были лучше при более высоком уровне кальция в рационе.

Данные химического состава грудных и ножных мышц перепелов свидетельствуют об отсутствии закономерностей его изменений в связи с составом рационов. Однако, можно отметить, что ножные мышцы перепелов группы 5 характеризовались самым высоким содержанием суммы всех аминокислот (20,61%), а также сумм незаменимых (10,49%) и заменимых (10,12%).

По массе потрошеной тушки и убойному выходу мяса лучший показатель имели перепела обоих полов опытных групп 3 и 5, получавших фитазу Берзайм-Р и более высокий уровень кальция в комбикормах. Так, убойный выход в этих группах превышал 70%, тогда как во всех остальных группах он был ниже. Масса и выход грудки у обоих полов птицы были наиболее высокими в группе 5 (93,78 г и 28,91% по самцам и 106,73 г и 28,94% по самкам), также как масса и выход бедра (35,21 г и 10,85% по самцам и 33,96 г и 9,21% по самкам). Масса съедобных внутренних органов (сердца, обоих желудков, печени) во всех группах находились в пределах физиологической нормы и были самыми высокими в опытной группе 5. Таким образом, можно констатировать, что лучшими мясными качествами характеризовалась опытная группа 5.

Следовательно, по результатам опыта 3 можно заключить, что по комплексу зоотехнических показателей выращивания перепелов, переваримости и использованию питательных веществ корма, качеству костяка, мясным качествам и ряду показателей химического состава (пищевой ценности) грудных и ножных мышц лучшей оказалась опытная группа 5, получавшая комбикорма с более высоким уровнем кальция (1,0%), более низким значением КФО (т.е. самым низким уровнем общего и доступного фосфора – 0,65 и 0,35% соответственно), а также с добавкой фитазного препарата Берзайм-Р в дозе 12 г/т комбикорма. Данный рацион был использован в качестве нового варианта при проведении производственной проверки.

3.4. Производственная проверка

Производственная проверка показала, что экономическая эффективность использования концентрированного фитазного ферментного препарата Берзайм-Р в дозировке 12 г на 1 т корма на фоне пониженного содержания общего фосфора 0,65% и доступного - 0,35% в комбикормах, с учетом производственных затрат на

содержание перепелов, составила 1101 рублей 47 коп., или в расчете на 1000 голов - 4405 рублей 89 коп. (в ценах 2024 года).

ЗАКЛЮЧЕНИЕ

В проведенных трех опытах и производственной проверке определена потребность перепелов новой мясной породы Радонежские в кальции и фосфоре при применении в комбикормах фитазы отечественного производства. Полученные результаты позволили сформулировать следующие выводы:

- 1. Сравнительное изучение трех природных источников кальция (известняк, мел, ракушка) и четырех кормовых фосфатов (три-, моно-, дикальцийфосфат и дефторированный фосфат) при одинаковых уровнях кальция и фосфора в комбикормах (1,0% кальция, 0,76 и 0,45% общего и доступного фосфора соответственно, при кальций-фосфорном отношении (КФО) 1,3:1 и 2,2:1) показало, что лучшим источником кальция при выращивании на мясо перепелов породы Радонежские до 6 недель жизни является известняк, а фосфора монокальцийфосфат. На мясные качества перепелов и показатели химического состава грудных и ножных мышц разные комбинации источников кальция и фосфора значимого влияния не оказали.
- 2. Использование комбинации рациональных источников кальция и фосфора (известняк + монокальцийфосфат) в составе комбикормов позволило повысить среднюю живую массу перепелов в 6 недель на 2,7% по сравнению с контролем, получавшим трикальцийфосфат, и на 0,2-1,6% по сравнению с группами, получавшими другие комбинации вышеуказанных источников кальция и фосфора. Затраты корма на 1 кг прироста живой массы при этом были ниже, чем в контроле, на 1,9%, при более высоких показателях переваримости и использования питательных веществ и лучшем качестве костяка. Индекс эффективности выращивания перепелов в данной группе превысил показатель контроля на 4,7%, а остальных опытных групп на 0,3-1,9%.
- 3. Опыт по оптимизации уровня кальция (в виде известняка) и КФО при фиксированном уровне фосфора в виде монокальцийфосфата (0,76 и 0,45% общего и доступного фосфора соответственно) в комбикормах показал целесообразность использования уровней кальция 1,0 и 0,9% (при КФО 1,1-1,3:1 по общему и 2,0-2,2:1 доступному фосфору) и нецелесообразность его повышения до 1,1 и 1,2% (при КФО 1,4-1,5:1 и 2,4-2,6:1 по общему и доступному фосфору соответственно). Близкие результаты также дало использование дифференцированного по возрасту уровня кальция 1,0% в первую фазу выращивания перепелов (1-4 недели жизни) и 0,9% во вторую (5-6 недель).
- 4. Использование кальция в комбикормах в количестве 1,0 и 0,9% позволило получить живую массу перепелов в 6 недель выше на 1,5-2,1% по сравнению с более высокими уровнями, улучшить конверсию корма на 0,7-1,7%, а также индекс эффективности выращивания птицы на 0,64-1,06 пункта. Повышенные уровни кальция снижали эффективность использования органической части рациона и качество костяка, без существенного влияния на химический состав грудных и ножных мышц перепелов и их мясные качества.

- 5. Исследования по изучению возможности снижения уровня фосфора в рационе за счет использования концентрированного фитазного препарата Берзайм-Р с активностью 50000 ед./г в дозе 12 г/т комбикормов с разными количествами кальция и фосфора показали, что оптимальным с точки зрения продуктивности перепелов является ввод данного ферментного препарата в комбикорма с уровнем кальция 1,0%, общего и доступного фосфора 0,65 и 0,35% соответственно (КФО 1,5:1 и 2,9:1). При содержании кальция в комбикормах 1,0% величины общего и доступного фосфора 0,76 и 0,45% и 0,70 и 0,40% (КФО 1,3-1,4:1 и 2,2-2,5:1 соответственно) оказались менее эффективными. Аналогичные результаты получены и при снижении кальция до 0,9%.
- 6. Установленная рациональная схема кормления перепелов обеспечила повышение их средней живой массы в 6 недель на 2,6% по сравнению с контролем, снижение затрат корма на 1 кг ее прироста на 4,3%, повышение индекса эффективности выращивания на 2,69 пункта (или на 10,4%), улучшение переваримости и использования питательных веществ корма, качества костяка и мясных качеств птицы.
- 7. Производственная проверка эффективности кормления перепелов породы Радонежские комбикормом с оптимальными уровнями кальция и фосфора, обогащенных фитазой, в сравнении с базовым вариантом с рекомендованным количеством кальция и фосфора без применения фитазы, способствовала увеличению их живой массы в 6- недельном возрасте на 2,4%, среднесуточного прироста на 2,5%, снижению затрат корма на 1 кг прироста на 3,6%, повышала убойный выход мяса на 1,4% и массу потрошеной тушки на 4,5%. Себестоимость 1 кг мяса снижалась на 18,64 руб./кг (или на 3,69%), а рентабельность его производства увеличивалась на 4,78%.
- 8. Экономический эффект от использования новой схемы кормления в расчете на 1000 голов перепелов составил 4405 рублей 89 коп. (в ценах 2024 года).

предложения производству

Для повышения эффективности производства мяса перепелов породы Радонежские рекомендуется использовать комбикорма, содержащие 1,0% кальция, с пониженным уровнем общего фосфора до 0,65% и доступного до 0,35%, при обогащении их отечественным ферментным препаратом Берзайм-Р с активностью фитазы 50 000 ед./г в дозе 12 г/т корма.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Перспективным направлением дальнейших исследований является изучение влияния оптимизированного минерального питания родительского стада перепелов (регулирование уровня кальция, общего и доступного фосфора с использованием фитазы) на показатели минерального обмена. Предполагается оценить влияние данных рационов на качество скорлупы яиц и показатели жизнеспособности суточного молодняка.

Список работ, опубликованных по материалам исследований

Публикации в изданиях, рекомендованных ВАК при Министерстве науки и высшего образования РФ:

- 1. **Тишенкова, М.С.** Кальций и фосфор в рационах перепелов (обзор) /М.С. Тишенкова// Птицеводство. 2020. № 7-8. С. 22-26.
- 2. **Тишенкова М.С.** Влияние различных источников кальция и фосфора на продуктивные качества мясных перепелов / М.С. Тишенкова, Т.А. Егорова// Птицеводство.-2025.-№6.- С. 41-46.

Патенты

3. Способ повышения качества костяка молодняка перепелов: патент на изобретение №2811137 С1 Российская Федерация, МПК А23К 10/00, А23К 50/75. /Т.А. Егорова, Т.Н. Ленкова, М.С. Тишенкова; заявитель и патентообладатель Федеральное государственное бюджетное научное учреждение Федеральный научный центр "Всероссийский научно-исследовательский и технологический институт птицеводства" Российской академии наук. № 2023103219: заявл. 13.02.2023: опубл. 11.01.2024.

Публикации в других изданиях:

- 4. **Тишенкова, М.С.** Влияние отечественного ферментного препарата на качество костяка молодняка перепелов /М.С. Тишенкова, Т.А. Егорова // В сб.: Вклад аграрных ученых в реализацию десятилетия науки и технологии в Российской Федерации. Материалы Международной научно-практической конференции, Курган, 2023. С. 87-92.
- 5. **Тишенкова, М.С.** Влияние отечественного ферментного препарата на качество костяка молодняка перепелов /М.С. Тишенкова, Т.А. Егорова // В сб.: Мировое и российское птицеводство: состояние, динамика развития, инновационные перспективы. Материалы XXI Международной конференции. Российское отделение Всемирной научной ассоциации по птицеводству, НП "Научный центр по птицеводству", Сергиев Посад, 2024. С. 448-451.
- 6. **Тишенкова, М.С.** Минерализация костяка молодняка перепелов при введении в рацион отечественного ферментного препарата / М.С. Тишенкова, Т.А. Егорова // В сб.: Достижения и перспективы развития птицеводства. Материалы Международной научнопрактическая конференции, посвященной 95-летию со дня рождения П.П. Царенко, Санкт-Петербург Пушкин, 2024. С. 251-255.
- 7. **Тишенкова, М.С.** Влияние отечественного ферментного препарата на качество костяка молодняка перепелов / М.С. Тишенкова // В сб.: Научно-информационное обеспечение инновационного развития АПК. Материалы XVI Международной научно-практической Интернет-конференции, Москва: Российский научно-исследовательский институт информации и технико-экономических исследований по инженерно-техническому обеспечению агропромышленного комплекса, 2024. С. 381-386.